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Tooth agenesis is one of the most common orodental anomalies that demonstrate
phenotypic and genotypic heterogeneity with a prevalence of 2.5%–7%. Mutations
in WNT10A have been proposed to be the most common cause of nonsyndromic
tooth agenesis (NSTA). The aim of this study was to characterize the dental features
and genetic variants of NSTA in a Thai population. We recruited 13 unrelated patients
with NSTA who attended the Faculty of Dentistry, Chulalongkorn University, Thailand,
from 2017 to 2019. All 13 underwent whole exome sequencing that identified likely
pathogenic genetic variants, all in WNT10A, in five patients. All five patients had
second premolar agenesis, while three also had absent or peg-shaped upper lateral
incisors. Patient 1 possessed a novel heterozygous duplication, c.916_918dupAAC
(p.Asn306dup) in WNT10A. Patients 2 and 3 harbored a heterozygous and homozygous
c.637G > A (p.Gly213Ser) in WNT10A, respectively. Patients 4 possessed a
heterozygous c.511C > T (p.Arg171Cys) in WNT10A. Patient 5 harbored a homozygous
c.511C > T (p.Arg171Cys) in WNT10A and a novel heterozygous c.413A > T
(p.Asn138Ile) in EDARADD, suggesting digenic inheritance. We recruited another 18
family members of these five patients. Out of 23 participants, homozygous WNT10A
variants were identified in 2 patients and heterozygous variants in 17 individuals. Both
homozygous patients had NSTA. Eight out of 17 heterozygous individuals (8/17) had
NSTA or a peg-shaped lateral incisor, indicating a 47% penetrance of the heterozygous
variants or 53% (10/19) penetrance of either homozygous or heterozygous variants
in WNT10A. The frequencies of the c.511C > T in our in-house 1,876 Thai exome
database, Asian populations, and non-Asian populations were 0.016, 0.005–0.033,
and 0.001, respectively; while those of the c.637G > A were 0.016, 0.004–0.029, and
0.000, respectively. In conclusion, our study reports two novel variants with one each in
WNT10A and EDARADD, expanding the genotypic spectra of NSTA. Second premolar
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agenesis is a common phenotype in affected individuals with variants in WNT10A;
however, its penetrance is incomplete. Lastly, the different frequencies of WNT10A
variants, c.511C > T and c.637G > A, in diverse populations might contribute to the
prevalence range of NSTA between continents.

Keywords: hypodontia, oligodontia, nonsynonymous, homozygous, heterozygous, ectoderm

INTRODUCTION

Tooth agenesis is the most common developmental dental
anomaly in humans with a prevalence between 2.5 and
7% (Polder et al., 2004; Khalaf et al., 2014). Missing less
than 6 teeth is called hypodontia, agenesis of 6 or more
teeth is called oligodontia, and the complete absence of
teeth is called anodontia. Multiple signaling pathways,
including bone morphogenic protein, fibroblast growth
factor, sonic hedgehog, and wingless (WNT), play important
roles in the epithelial-mesenchymal interactions during
tooth development. WNT/β-catenin signaling is involved
from the early to late stages of tooth formation (Liu et al.,
2008; Porntaveetus et al., 2012; Intarak et al., 2018). Among
WNT family members, mutations in WNT10A (OMIM
∗606268) are predominantly related to tooth agenesis (TA)
involving both nonsyndromic/isolated/selective tooth agenesis
(NSTA/STHAG4, MIM #150400) and syndromic tooth agenesis,
such as odontoonychodermal dysplasia (MIM #257980) and
Schopf-Schulz-Passarge syndrome (MIM #224750).

Population-based studies have revealed that 28%–62% of
tooth agenesis patients have with WNT10A variants (van den
Boogaard et al., 2012; Mostowska et al., 2013; Arzoo et al.,
2014). Heterozygous, homozygous, and compound heterozygous
forms of WNT10A were associated with NSTA with phenotypic
heterogeneity. Using WNT10A target sequencing, significantly
elevated frequencies of WNT10A variants were observed in the
tooth agenesis group compared with the control group (Song
et al., 2014; Machida et al., 2017). Biallelic WNT10A variants
were proposed to be a pathogenic factor for tooth agenesis with
complete penetrance, while a single allelic variant, presenting in
a significantly higher frequency in tooth agenesis patients, was
considered to be a predisposing factor for tooth agenesis with
reduced penetrance (Mues et al., 2014; Guazzarotti et al., 2018).
These findings prompted us to investigate the dental phenotype
and genotype in Thai patients with NSTA and determine the
allele frequencies of WNT10A in Thais compared with Asian and
non-Asian populations.

MATERIALS AND METHODS

Subject Enrollment
The study protocol was approved by the Institutional
Review Board (HREC-DCU 2018-091), Faculty of Dentistry,
Chulalongkorn University and complied with the Declaration
of Helsinki. Written informed consents were obtained prior
to the patients’ participation in this study. Thirteen unrelated
patients with NSTA who attended the Faculty of Dentistry,

Chulalongkorn University, Thailand between January 2017 and
March 2019 and their family member were recruited. Clinical
and radiographic examinations, dental history, and intraoral
photographs of the probands were used to assess tooth agenesis.
The size and shape of the remaining teeth were also observed.
The patients did not have any signs or symptoms related to
ectodermal organ defects, e.g. intolerance to heat, dry skin,
abnormal sweating, sparse hair, or brittle nails (Bergendal et al.,
2006). The dental phenotypes of the probands’ family members
were obtained from clinical and radiographic examinations,
dental records, or participant interviews.

Mutation Analyses
Genomic DNA extracted from peripheral blood leukocytes was
subjected to mutation analysis using whole exome sequencing
(WES) (Porntaveetus et al., 2018). Briefly, genomic DNA was
captured using a SureSelect Human All Exon version 4 kit
(Agilent Technologies, Santa Clara, CA, United States) and
sequenced using Hiseq2000 (Macrogen, Seoul, South Korea).
The sequences were aligned to the human genome reference
sequence1 using the Burrows-Wheeler Aligner2. Downstream
processing was performed with SAMtools3 and annotated against
the dbSNP and 1000 Genomes. After quality filtering, the
variants were screened using the genes listed in HP: 0009804
(reduced number of teeth) in Human Phenotype Ontology
(Köhler et al., 2018). All calls with a coverage < 10×, minor
allele frequency > 5% in the 1000 Genomes Project, Genome
Aggregation Database (gnomAD4), and our in-house database of
1,876 Thai exomes; non-coding variants; and synonymous exonic
variants were filtered out. The identified variants were confirmed
by Sanger sequencing (Supplementary Table 1). The alignment
and conservation of amino acid residues were generated by
Clustal Omega (Madeira et al., 2019).

Allele frequencies of WNT10A variants were screened with
multiple variant databases comprising the Genome Aggregation
Database (gnomAD), GenomeAsia100K consortium, Northeast
Asian Reference Database (NARD), Han Chinese genome
project (PGG.Han), 4.7K Japanese individual genome variation
(4.7KJPN), Human Genetic Variation Database (HGVD), Korean
Variant Archive (KOVA), and our in-house database, last access
on June 3, 2020.

Bioinformatics tools consisting of PolyPhen-2 (Adzhubei
et al., 2010), SIFT (Kumar et al., 2009), MutationTaster

1UCSC Genome Browser, hg19
2http://bio-bwa.sourceforge.net/
3samtools.sourceforge.net/
4gnomad.broadinstitute.org
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FIGURE 1 | Family pedigrees and genetic variants. Arrow indicates the proband. Tooth phenotypes of the participants were determined either by the dentist or
reported by the participants. W+/+, homozygous WNT10A variant; W+/-, heterozygous WNT10A variant; W+/+, wild-type WNT10A variant; E+/+, homozygous
EDARADD variant; E+/-, heterozygous EDARADD variant; E+/+, wild-type EDARADD variant.

(Schwarz et al., 2014), and CADD (Rentzsch et al., 2018) were
used to predict each variant’s pathogenicity.

RESULTS

We performed WES for 13 unrelated patients with NSTA
during 2017–2019 and detected variants related to tooth agenesis
(HP: 0009804) in five patients. All five patients (Patients 1–
5) possessed variants in WNT10A (NM_025216.3). We then
recruited 18 additional family members of these 5 index patients,
characterized their dental phenotype, and performed Sanger
sequencing (Figure 1 and Supplementary Figure 1).

Patient 1, a 16-year-old female, lacked nine permanent
teeth, all premolars and the lower right first molar. The
lower left second molar was extracted due to pulp necrosis.
Oral examination revealed that she had peg-shaped upper

lateral incisors, severely hypoplastic edentulous ridges, anterior
deep bite, and malocclusion. WES identified that the patient
possessed a novel heterozygous duplication, c.916_918dupAAC
(p.Asn306dup), in WNT10A (ClinVar SCV001335264). This
variant was detected in the patient’s mother and grandmother
who had NSTA, and in the unaffected half aunt.

Patient 2, a 27-year-old female, had 6 missing teeth, 4 upper
premolars, and 2 lower third molars. The known heterozygous
missense mutation, c.637G > A (p.Gly213Ser), in WNT10A was
identified in the patient, and in the patient’s father and two sisters
who reported no missing teeth. The mothers had biallelic wild-
type alleles.

Patient 3, a 28-year-old male, had 12 missing teeth comprising
an upper right canine, 3 first premolars, 4 second premolars,
and 4 third molars. The homozygous mutation, c.637G > A
(p.Gly213Ser), in WNT10A was identified in the patient. The
WNT10A heterozygous c.637G > A (p.Gly213Ser) variant was

Frontiers in Physiology | www.frontiersin.org 3 November 2020 | Volume 11 | Article 573214

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-573214 November 16, 2020 Time: 17:1 # 4

Kanchanasevee et al. WNT10A Variants in Asian Populations

detected in the patient’s older sister who was missing her 4 second
premolars, and the younger sister, father, and mother who did not
have any teeth missing.

Patient 4, a 31-year-old female, was missing her 2 lower
second premolars and peg-shaped upper lateral incisors. Her
deciduous lower right and left second molars were retained. Four
third molars were previously extracted. The known heterozygous
missense variant, c.511C > T (p.Arg171Cys), in WNT10A was
detected in the patient, and in the patient’s older sister and
mother who did not have tooth agenesis. The father possessed
wild-type alleles.

Patient 5, a 34-year-old male, had agenesis of 8 permanent
teeth, 2 upper lateral incisors, 2 right second premolars, and
4 third molars. He had implant replacements at the upper
right lateral incisor and lower right second premolar. The
homozygous missense variant, c.511C > T (p.Arg171Cys) in
WNT10A and a novel heterozygous missense variant, c.413A > T
(p.Asn138Ile), in EDARADD (Clinvar SCV001335265) was
identified in the patient. The heterozygous WNT10A c.511C > T
variant was also detected in the patient’s older sister who
was missing two upper lateral incisors and two lower third
molars and the mother who had peg-shaped upper lateral
incisors. The heterozygous EDARADD c.413A > T variant
was present in the patient’s older brother, but not in the
sister and mother.

In Patients 1–5, the number of missing teeth was between 2
and 12 or between 2 and 9 teeth (excluding the third molars). An
absent second premolar or peg-shaped upper lateral incisor was
frequently observed in the patients (Table 1).

We used several bioinformatic tools to predict the
pathogenicity of the variants. We found that the WNT10A
c.511C > T (p.Arg171Cys) was predicted to be deleterious
(CADD: 25.6), deleterious (SIFT: 0.0), possibly damaging
(PolyPhen-2: 0.93), and disease causing (MutationTaster).
The WNT10A c.637G > A (p.Gly213Ser) was predicted
to be deleterious (CADD: 27.2), deleterious (SIFT: 0.0),
probably damaging (PolyPhen-2: 1.0), and disease causing
(MutationTaster). Furthermore, the EDARADD c.413A > T
(p.Asn138Ile) was predicted to be deleterious (CADD: 27.3),
deleterious (SIFT: 0.0), possibly damaging (PolyPhen: 1.0), and
disease causing (MutationTaster).

The amino acid residues; p.Arg171, p.Gly213, and p.Asn306
in WNT10A, and p.Asn128 in EDARADD are conserved among
multiple species (Supplementary Figure 2). According to the
ACMG standards and guidelines, the WNT10A c.511C > T
and c.637G > A and the EDARADD c.413A > T variants
are considered to be likely pathogenic, while the WNT10A
c.916_918dupAAC variant is considered as uncertain significance
(Richards et al., 2015).

Eighteen members of the five index patients’ families (23
total) were included. Out of the 23 participants, the homozygous
WNT10A variants were identified in 2 patients (3.II.2 and
5.II.3) and the heterozygous variants in 17 individuals. Both
homozygous patients had nonsyndromic tooth agenesis (NSTA).
Eight (1.I.2, 1.II.2, 1.III.1, 2.II.1, 3.II.1, 4.II.2, 5.I.2, and 5.II.2) out
of 17 heterozygous individuals (8/17) had NSTA or a peg-shaped
lateral incisor, indicating a 47% penetrance of the heterozygous

variants, or a 53% (10/19) penetrance of either homozygous or
heterozygous variants in WNT10A.

We screened the frequencies of the WNT10A c.511C > T and
c.637G > A variants in multiple variant databases comprising the
Genome Aggregation Database (gnomAD), GenomeAsia100K
consortium, Northeast Asian Reference Database (NARD), Han
Chinese genome project (PGG.Han), 4.7K Japanese individual
genome variation (4.7KJPN), Human Genetic Variation Database
(HGVD), Korean Variant Archive (KOVA), and our in-house
database. The allele frequencies of WNT10A c.511C > T and
c.637G > A in Asian populations was between 0.005 and 0.033
and between 0.004 and 0.029, respectively. In our in-house
database (ThWES) of 1,876 Thai exomes, the frequency of
c.511C > T variant was 0.016 and that of c.637G > A variant was
0.016, which were in the Asian population ranges. In contrast,
the frequency of the c.511C > T variant was 0.001 and that of
the c.637G > A variant was and 0.000 in non-Asian populations
(Table 2). These results indicate that the WNT10A c.511C > T
and c.637G > A variants are common and concentrated in Asian
populations compared with non-Asian populations.

DISCUSSION

In this study, we identified five index patients having NSTA
and variants in WNT10A. Eighteen more family members
were included. The number of missing teeth observed ranged
from 2 to 12 teeth or 2 to 9 teeth, excluding third
molars. WNT10A is the most common variant associated
with NSTA (van den Boogaard et al., 2012; Mostowska
et al., 2013; Arzoo et al., 2014). Here, we identified that
all five patients possessed WNT10A variants. The novel
heterozygous duplication, c.916_918dupAAC (p.Asn306dup),
was identified in Patient 1. The heterozygous state of c.637G > A
(p.Gly213Ser) variant was detected in Patient 2 and its
homozygous state in Patient 3. The heterozygous state of
c.511C > T (p.Arg171Cys) variant was detected in Patient 4
and its homozygous state was detected in Patient 5. The novel
heterozygous c.413A > T (p.Asn138Ile) in EDARADD was
observed in Patient 5.

The relationship between the heterozygous WNT10A variants
(c.511C > T and c.637G > A) and NSTA was characterized
in large well-phenotyped population cohorts (Song et al., 2014;
Machida et al., 2017). Both variants were significantly associated
with tooth agenesis compared with healthy control individuals.
In other studies, the variants were shown to cause tooth agenesis
with incomplete penetrance (He et al., 2013; Plaisancié et al.,
2013; Kantaputra et al., 2014). Biallelic WNT10A variants were
proposed to be the pathogenic factor for tooth agenesis with
complete penetrance, while single allelic variants, presenting with
a significantly higher frequency in tooth agenesis patients, were
considered to be a predisposing factor for tooth agenesis with
reduced penetrance (Mues et al., 2014; Guazzarotti et al., 2018).
In addition, the phenotypic spectrum of WNT10A mutations
was shown to be dose-dependent with variable expressivity,
including within the same family (Park et al., 2019). Patients
with biallelic WNT10A mutations had severe tooth agenesis,
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TABLE 1 | The identified WNT10A variants in subjects with tooth agenesis or peg-shaped upper lateral incisors.

Family Patient Dental arch Tooth

8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Number of missing
teeth (excluding 3rd

molars)

Mode Mutation Amino acid
change

1 Patient 1 Upper • • � � • •

Lower • • • • • x 9 Het c.916_918dup p.Asn360dup

2 Patient 2 Upper • • • •

Lower • • 6 (4) Het c.637G > A p.Gly213Ser

3 Patient 3 Upper • • • • • • •

Lower • • • • • 12 (8) Homo c.637G > A p.Gly213Ser

Patient 3’s older sister Upper • •

Lower � � � � � 2 Het c.637G > A p.Gly213Ser

4 Patient 4 Upper � �

Lower • • 2 Het c.511C > T p.Arg171Cys

5 Patient 5a Upper • • � � •

(II.3) Lower • • • 8 (4) Homo c.511C > T p.Arg171Cys

Patient 5’s sister Upper � �

(II.2) Lower � � • 4 (2) Het c.511C > T p.Arg171Cys

Patient 5’s mother Upper � �

(I.2) Lower 0 Het c.511C > T p.Arg171Cys

1, central incisor; 2, lateral incisor; 3, canine; 4, first premolar; 5, second premolar; 6, first molar; 7, second molar; 8, third molar.; •, missing tooth; �, missing upper lateral incisor; �, peg-shaped upper lateral incisors;
x, extraction; NA, not available; Het, heterozygous; Homo, homozygous.
aThe heterozygous missense variant, c.413A > T (p.Asn138Ile), in EDARADD was also found in Patient 5.
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TABLE 2 | Allele frequencies and details of WNT10A c.511C > T (p.Arg171Cys) and c.637G > A (p.Gly213Ser) variants.

rs116998555 c.511C > T (p.Arg171Cys) rs147680216 c.637G > A (p.Gly213Ser)

Database Allele count Allele
number

Number of
homozygotes

Allele
frequency

Allele
count

Allele
number

Number of
homozygotes

Allele
frequency

gnomAD (v2.1.1 and v3)

East Asian 370 23084 3 0.016 657 22960 16 0.029

Non-East Asian 335 402864 1 0.001 22 400838 0 0.000

South Asian 51 33652 1 0.002 4 33616 0 0.000

African 32 67004 0 0.001 3 66550 0 0.000

Ashkenazi Jewish 0 13692 0 0.000 0 13646 0 0.000

European (Finnish) 13 35558 0 0.000 0 35046 0 0.000

European (non-Finnish) 223 193594 0 0.001 4 192768 0 0.000

Latino 6 49094 0 0.000 3 48994 0 0.000

Other 10 10270 0 0.001 8 10218 0 0.001

Total 705 425948 4 0.002 679 423798 16 0.002

GenomeAsia 100K

Southeast Asia 4 692 0 0.006 3 692 0 0.004

Northeast Asia 5 702 0 0.007 10 702 0 0.014

South Asia 7 1448 0 0.005 0 1448 0 0.000

Other 0 636 0 0.000 0 636 0 0.000

Total 16 3478 0 0.005 13 3478 0 0.004

Northeast Asian Reference Database (NARD) 35 3558 NA 0.010 51 3558 NA 0.014

Han Chinese genome project (PGG.Han) 3596 107232 NA 0.033 1161 108146 NA 0.011

4.7K JPN (4,773 Japanese individuals) NA NA NA 0.010 NA NA NA 0.015

HGVD (3,248 Japanese individuals) 36 2412 0 0.015 35 2388 0 0.015

Korean Variant Archive (KOVA) (1,055 healthy Korean individuals) NA NA NA 0.019 NA NA NA 0.019

ThWES 1876 (In-house database of 1,876 Thai individuals) 58 3752 4 0.016 59 3752 0 0.016

JPN, Japanese individual genome variation; genomAD, Genome Aggregation Database; HGVD, Human Genetic Variation Database; NA, not available. Bold numbers indicate maximum and minimum allele
frequencies in the column.
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while heterozygous patients were either unaffected or had a mild
tooth phenotype.

In our study, Patient 3 (3.II.2) and Patient 5 (5.II.3), who
harbor the homozygous WNT10A c.637G > A and c.511C > T
variants, respectively, have tooth agenesis and their phenotypes
are more severe than the heterozygous individuals with the
same variant. In our cohort, the heterozygous c.511C > T and
c.637G > A variants demonstrated incomplete penetrance, which
is consistent with previous reports. The evidence mentioned
above suggests that the heterozygous WNT10A c.511C > T
or c.637G > A allele can be a contributing factor for NSTA
with low penetrance, while biallelic variants are associated with
greater clinical severity. However, there might be other genetic
or environmental factors influencing the phenotypic expression
of NSTA patients.

Mutations in EDARADD (OMIM∗ 606603) are associated
with autosomal dominant ectodermal dysplasia 11A (MIM#
614940) (Bal et al., 2007; Cluzeau et al., 2011) and autosomal
recessive ectodermal dysplasia 11B (MIM# 614941) (Chaudhary
et al., 2016). The EDARADD c.413A > T (p.Asn138Ile) variant
identified in Patient 5 is located in the death domain that interacts
with EDAR. The homozygous and heterozygous mutations in the
EDAR death domain cause hypohidrotic ectodermal dysplasia
(MIM #614940, #614941) with low penetrance (Bal et al., 2007;
Cluzeau et al., 2011). To the best of our knowledge, only one
heterozygous EDARADD variant, c.308C > T, p.Ser103Phe, was
identified in patients with NSTA. The allelic frequency of the
EDARRADD c.308C > T variant is found in up to 2% of a healthy
population according to the dbSNP database. However, this
variant has been associated with NSTA, but with low penetrance
and variable expressivity. (Bergendal et al., 2011; Arte et al., 2013;
Barbato et al., 2018; Martínez-Romero et al., 2019). Although the
heterozygous EDARADD c.413A > T mutation was detected in
the patient and his unaffected brother, it was not in his affected
sister or mother.

Interestingly, the digenic heterozygous variants of WNT10A
and other genes in the EDA pathway, including EDA, EDAR,
and EDARADD, have been found in several patients with NSTA
(Arte et al., 2013; He et al., 2013; Barbato et al., 2018; Martínez-
Romero et al., 2019). The WNT and EDA pathways are suggested
to play complementary roles during tooth development (Yu
et al., 2019). In Family 5, the WNT10A c.511C > T variant
was present in the homozygous state in the patient (8 missing
teeth), in the heterozygous state in the sister (4 missing teeth) and
proband’s mother (peg-shaped lateral incisors), and not detected
in the proband’s brother (unaffected). Therefore, the role of the
WNT10A variant in this family may be because its homozygous
state is associated with more severe NSTA than those with
the heterozygous variant, and the heterozygous variant shows
incomplete penetrance. Moreover, the coexistence and variable
penetrance of WNT10A and EDARADD variants may modulate
the final phenotype of Patient 5.

Tooth agenesis is one of the most common anomalies in
human development. Its prevalence in the general population
is 2.5–7% (Polder et al., 2004). Mutations in WNT10A are the
most frequently found variants associated with NSTA in several
populations studied to date (van den Boogaard et al., 2012;

Mostowska et al., 2013; Song et al., 2014; Tardieu et al., 2017). In
particular, the WNT10A c.511C > T and c.637G > A variants are
predominant in Asian populations compared with Europeans
(Song et al., 2014; Machida et al., 2017). According to multiple
genetic databases, we observed the allele frequencies of WNT10A
c.511C > T and c.637G > A variants in Asian populations
up to 0.033 and 0.029, respectively, compared with those in
non-Asians, which are 0.000–0.001. The frequencies of the
c.511C > T and c.637G > A variants in our in-house database
of 1,876 Thai exomes are 0.016, which are in the range of Asian
populations, including Japanese, Chinese, and Koreans. These
results indicate that these two variants are relatively common in
Asian populations. The difference in WNT10A allele frequencies
among different ethnic groups may also partly explain the
diverse prevalence of tooth agenesis on different continents
(Khalaf et al., 2014).

The number and location of missing teeth are associated with
mutations in specific genes (Al-Ani et al., 2017). A genotype-
phenotype correlation study revealed that the second premolars
were the most common missing teeth found in patient with
WNT10A variants (Arzoo et al., 2014). All five patients in our
study had agenesis of the second premolars, suggesting that
WNT10A variants might be responsible for the absence of second
premolars with high penetrance. Mutations in WNT10A have
also been proposed to cause agenesis or microdontia of the upper
lateral incisors (Kantaputra et al., 2014; Mostowska et al., 2015).
Absent upper lateral incisors was observed in Patient 5 and his
sister, and peg-shaped upper lateral incisors were found in Patient
1, Patient 4, and Patient 5’s mother who had the heterozygous
WNT10A variants.

CONCLUSION

In conclusion, this study reports a novel in-frame duplication,
c.916_918dupAAC (p.Asn306dup), in WNT10A and a novel
heterozygous missense variant, c.413A > T (p.Asn138Ile), in
EDARADD, expanding the genotypic spectrum related to NSTA.
The heterozygous WNT10A c.511C > T and c.637G > A
variants demonstrate incomplete penetrance. Both variants are
more common in Asian populations compared with non-
Asians, which might explain the diverse prevalence of NSTA in
various continents.
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